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It is shown that a Banach space is uniformly non-square if and only if the
supremum of the norms of the metric projections onto proximinal subspaces is less
than 2; it is also shown that a Banach space of dimension at least 3 is a Hilbert
space if and only if the same supremum is equal to 1. Some examples are given of
Banach spaces that contain Chebyshev subspaces whose metric projections are
linear and have norm 2.

1. INTRODUCTION

Let X be a real Banach space and M a non-trivial, closed, proper subspace
of X. The metric projection onto M is the mapping PM: X -+ 2M, which
associates with each x in X its (possibly void) set of best approximations in
M; that is,

PM(x) = {m E M: Ilx- mil =d(x,M)},

where d(x, M) = inf{llx - yll: y EM}. The subspace M is called proximinal
(resp. Chebyshev) if PM(X) contains at least (resp. exactly) one point for each
x in X. If M is a proximinal subspace of X, define the norm of PM by

IIPMII = sup{lIbl/: b E PM(x) and IIxll ~ I}.

Note this definition extends the one given in [2] where M is only allowed to
be a Chebyshev subspace of X. Since PM(m) = {m} for m in M, it follows
that IIPMII ~ 1. If b is in PM(x) for x in X, then

Ilbll ~ lib -xii + Ilxll ~ 211xll

and hence IIPMII ~ 2. Thus 1 ~ IIPMII ~ 2 for every proximinal subspace M
of X.

* The author was supported in part by National Science Foundation Grant MCS 78-02265.

224
0021-9045/81/030224-06$02.00/0
Copyright © 1981 by Academic Press~ Inc.
All rights of reproduction in any form reserved.



NORMS OF METRIC PROJECTIONS 225

It is well known that in a Hilbert space the metric projection onto a closed
subspace is the orthogonal projection and hence is single-valued, linear, and
has norm 1. Deutsch and Lambert [2] proved that for each real number r
with 1~ r < 2, there is a Chebyshev subspace M of 11(2), the two dimen
sional II space, such that PM is linear and has norm r. They also showed that
C[O, I] contains a Chebyshev subspace whose metric projection is linear and
has norm 2. Thus metric projections (in fact, even linear ones) onto
Chebyshev subspaces exist with every norm size possible.

The purpose of this paper is to study the relationship between the
geometry of a given Banach space and the norms of the metric projections
onto its proximinal subspaces. This investigation was motivated by a
question posed by Deutsch and Lambert [2], asking exactly which Banach
spaces contain Chebyshev subspaces having linear metric projections with
norm 2. While the results of this paper shed some light on this question, the
spotlight here is on the supremum of the norms of the metric projections
onto proximinal subspaces.

Every Banach space contains proximinal subspaces, for example, finite
dimensional subspaces and null spaces of continuous linear functionals that
attain their norm on the unit ball. It is well known that every subspace of a
Banach space X is a proximinal subspace if and only if X is reflexive.

For a Banach space X, define the metric projection bound of X, denoted
MPB(X), by

MPB(X) = sup{IIPMII: M is a proximinal subspace of Xl.

From the discussion above, for every space X, it follows that 1~
MPB(X) ~ 2. In particular, if H is a Hilbert space, then MPB(H) = 1; also,
MPB(/I(2)) = 2 and MPB(C[O, 1]) = 2.

Section 2 contains the main results of this paper. First, a Banach space X
is uniformly non-square if and only if MPB(X) < 2. Using this charac
terization, it is shown that if X is not uniformly non-square, then the space
12(X) contains a proximinal subspace M with IIPMII = 2. Second, a Banach
space X of dimension at least 3 is a Hilbert space if and only if MPB (X) = 1.

In Section 3, an example is given to show that it is possible for X to
contain a Chebyshev subspace whose metric projection is linear and has
norm 2 even though X has several nice rotundity and smoothness properties.
The paper concludes with some remarks relevant to the Deutsch and
Lambert question.

2. THE METRIC PROJECTION BOUND

A Banach space X is uniformly non-square if there is a positive number t5
such that there do not exist elements x and y of the unit baH for which
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H(x + y)1I > 1 - & and IIHx - Y)II > 1 - &. James [6) introduced this notion
and proved that uniformly non-square spaces are reflexive. It is now known,
from the work of James and Enflo, that a Banach space is superreflexive if
and only if it has an equivalent uniformly non-square norm (see [1, p. 169)).

THEOREM 2.1. A Banach space X is uniformly non-square if and only if
MPB(X) < 2.

Proof Assume X is uniformly non-square and let & be the positive
number guaranteed in the definition. Suppose there is a proximinal subspace
M of X such that IIPMII > 2 - &. Choose an element x of unit norm and bin
PM(x) such that Ilbll>2-& and let y=b-x. Then Ilyll<llxll=1 and
IIHx + y)11 > 1 - &/2. Now, from the triangle inequality, it follows that
II y II > 1 - & and hence

IIHx- y)II=llx-ibll~llyll> 1-&.

The existence of x and y contradict the hypothesis on X. Thus MPB(X) <
2-&.

For the converse, assume X is not uniformly non-square. Let e > 0 be
given. It must be shown that there exists a proximinal subspace M of X such
that IIPMII > 2 - e. Choose a positive integer n such that lO- n <e/4. Since X
is not uniformly non-square, there exist elements x and y of unit norm in X
such that the unit sphere S of the two dimensional subspace of X determined
by x and y lies inside the parallelogram generated by ±(1 + lO- ne/4)x and
±(1 + lO- ne/4)y. For convenience, let P denote the parallelogram generated
by ±x and ± y. Thus S lies inside (1 + 10 - ne/4)p. Let M be the one dimen
sional subspace of X generated by u = x + (1 - e/4 )y. Note that M is a
proximinal subspace of X. To show IIPMII > 2 - e it suffices to show there
exists b in PM(x) such that II bll > 2 - e. Since x + (1 - e/4)S intersects M at
u (and possibly some other points), it follows that d(x, M) < 1 - e/4. From
this, the fact that S lies inside (1 + lO- ne/4)p, and the observation that
(1 - e/4)(1 + lO- ne/4) < 1 - (1 - lO- n)e/4, it follows that x +d(x, M)S
lies inside the parallelogram PI == x + (1 - (1 - lO- n)e/4)p. Therefore every
element of PM(X) lies inside PI' Let z and w be the points of intersection of
M with PI labeled in such a way that II z II < II w II. Let b be any element of
PM(x). Then b lies in M between z and wand hence Ilbll ~ Ilzll. Thus it
suffices to show that IIzll > 2 - e. Let Po == x +P, let Pz == x + (1- e/4)P,
and let t=x + (1- (1- lO- n )e/4)y. Observe that the parallelograms Po,
PI' and Pz are all multiples of P translated by x and that the one dimen
sional subspace M intersects Po, PI' and P z at the points 0, z, and u, respec
tively. Since Ilu-tll=10- n llu-(x+y)ll, it follows that Ilu-zll=
10 -n II u - 0 II. But II u II < 2 and hence II u - z II < e/2 by the choice of n. Thus

Ilx + y - zll < Ilx + y - ull + Ilu - zll < 3e/4. (*)



NORMS OF METRIC PROJECTIONS 227

Since S lies inside (1 + 1O-ne/4)p, it follows that Ilx + yll >
2/(1 + 1O-ne/4) > 2 - e/4. From this inequality and inequality (*), using the
triangle inequality, it follows that II z II > 2 - e. This completes the proof.

In the following corollaries, X* denotes the dual space of the Banach
space X. The first two corollaries follow easily since X is uniformly non
square if and only if X* is uniformly non-square (see [1, p. 173]) and since
X is uniformly non-square if it is either uniformly rotund or uniformly
smooth (see [1, Chap. VII, Sect. 2]).

COROLLARY 2.2. MPB(X) < 2 if and only if MPB(X*) < 2.

COROLLARY 2.3. If X is uniformly rotund or uniformly smooth, then
MPB(X) < 2 and MPB(X*) < 2.

COROLLARY 2.4. If X is not uniformly non-square and 1 ~ P < 00, then
the Banach sequence space IP(X) contains a proximinal subspace M such
that II PM II = 2.

Proof By Theorem 2.1, MPB(X) = 2 and hence there exists a sequence
{M;} of proximinal subspaces of X such that IIPM,II ~ 2 - i-I. Let M be the
subspace of IP(X) defined by m = (m;) belongs to M if and only if m j belongs
to M i for each i. It is easy to verify that M is a proximinal subspace of IP(X)
and, in fact, PM(x) = {b = (b i ): b j E PM,(x;) for each i} for x = (x j ) in IP(X).
Also IIPMII ~ IIPMjl1 for each i and hence IIPMII = 2. This completes the proof.

As mentioned in the introduction, if X is a Hilbert space, then
MPB(X) = 1. It will be shown that the converse is also true whenever X is a
Banach space of dimension at least 3.

Let .1 denote James' orthogonality; that is, x.l y if and only if Ilxll ~
Ilx +ayll for all real numbers a. It is well known (see [5]) for a Banach
space X of dimension at least 3 that .1 is symmetric (that is, x.l y implies
y .l x) if and only if X is a Hilbert space.

THEOREM 2.5. For X a Banach space, MPB(X) = 1 if and only if .1 is
symmetric. Hence, whenever the dimension ofX is at least 3, MPB(X) = 1 if
and only if X is a Hilbert space.

Proof Assume that .1 is symmetric and M is a proximinal subspace of
X. Since x - PM(X) .1 M, it follows that M .1 x - PM(X) and, in particular,
PM(x ) .1 x - PM(X). Therfore, for b in PM(X), it follows that II b II ~
lib +x -bll = Ilxll and hence IIPMII ~ 1.

For the reverse implication, assume MPB(X) = 1 and x.l y. Let M be the
one dimensional subspace of X generated by y. Since, for a a real number,
ax.l y, it follows that y is an element of PM(ax + y) and hence II yll ~
II ax + yll because MPB(X) = 1. Therefore y.l x. This completes the proof.
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3. EXAMPLES AND REMARKS

EXAMPLE 3.1. Let XI be the product space P/2(BJ, where B i is the two
dimensional [i+1 space (see (1,p.35] for the definition). Since
limhco II(a,,B)II/I+l=max{lal, I,BI}, it follows, by the proof of Theorem 2.1,
that for each positive integer n there exists j = j(n) such that Bj contains a
one dimensional subspace M j with II PM)I ~ 2 - n- 1. Note that M j is a
Chebyshev subspace of B j since B j is rotund. Let M be the subspace of XI
defined by m = (mi) belongs to M if and only if mi belongs to M j if i = j(n)
for some nand m i = 0 otherwise. Then M is a Chebyshev subspace of XI; in
fact, for x = (Xi) in Xl> it is easy to verify that PM(x) = (mi)' where m i =
PMiXj) if i = j(n) for some nand mi = 0 otherwise. Now, IIPMII ~ IIPMjl1 for
all j and hence IIPMII = 2. Also note that PM is linear since PM' is linear for

1

all j; that PM is linear follows from the general fact that any Chebyshev
1

hyperplane in a Banach space has linear metric projection (see [4, p. 159D.
So XI has a proper Chebyshev subspace whose metric projection is linear

and has norm 2 yet the norm on XI is locally uniformly rotund, weakly
uniformly rotund, Frechet differentiable, and uniformly Gateaux differen
tiable (see (1, Chap. VII, Sect. 2D. Also, note that XI is superreflexive; in
fact, XI is isomorphic to a Hilbert space.

The method of proof of Corollary 2.4 and the method of constructing
Example 3.1 provide a general technique to produce examples, the results of
which are collected in the following statement.

PROPOSITION 3.2. Let p be such that 1 ~ P < 00. If {X;} is a sequence of
Banach spaces, then p/P(Xi ) contains a proximina[ subspace M with IIPMII ~

lim SUPi_co MPB(X;).
In particular, if X is a Banach space, then [P(X) contains a proximina[

subspace M with IIPMII ~ MPB(X).

EXAMPLE 3.3. The space [I contains a Chebyshev subspace whose
metric projection is linear and has norm two. This follows from the
technique capsulated in Proposition 3.2 since [I is isometrically isomorphic
to [1([1(2» and since for each i the space [1(2) contains a Chebyshev
subspace M i with IIPM;II ~ 2 - i-I (see [2]); that M is Chebyshev and PM is
linear follow as in Example 3.1.

A general answer (at least an answer in terms of the geometry of Banach
spaces) to the Deutsch and Lambert question seems elusive. By Lemma 4.3
of [2] and Theorem 2.1, a necessary condition for Xto contain a Chebyshev
subspace with metric projection of norm two is that X is infinite dimensional
and not uniformly non-square. However, this condition is not sufficient since
['t'(r) with card(r) > c has no Chebyshev subspaces at all (see [3] or
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[4, p. 117 D. Determining a characterizing condition is difficult (if not
impossible) since (1) the spaces C[O, 1], [', and X, contain Chebyshev
subspaces whose metric projections are linear and have norm two yet the
geometry and structure of these spaces are so greatly different, and (2) given
any Banach space X, there is a Banach space containing X as a
complemented subspace which has a Chebyshev subspace whose metric
projection is linear and has norm 2 (take, for example, X EB 2 [').
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